[bookmark: _GoBack]Linting Names Using Regular Expressions

Problem: Naming inconsistencies led to duplication of clone entries in Benchling and subsequently clone files in AWS S3 buckets.
Goal: Create an automated linter to ensure all names match a prespecified format that will send results via Slack or email.

To begin with, I explored Benchling at Zach’s request, as he hoped to get me involved in some basic data curation on the platform. I downloaded Registry data from Benchling to mark all clone entries whose library names were three digits long, as library sizes had expanded into the four-digit range. This was becoming a problem for the scientists, as clones would no longer be displayed in order. (Library 1234 would come before Library 234.) Working in Excel, I padded the three-digit libraries with a leading zero and bulk-uploaded the corrected clone names and library categories to Benchling. A similar problem was found to exist in the well names, although this could not as easily be fixed with a bulk upload, as Benchling would automatically remove the leading zeros in the well category. When I was doing this, I noticed another issue: the naming inconsistencies led to duplication of clone entries in Benchling, e.g. a clone entity might be entered as both “ALB-L097-523-B6” and as “ALB-L0097-523-B6”, but with different data associated with them in the Warehouse. This subsequently caused a similar problem with the clone files in the AWS S3 bucket. My task was to create an automated linter to ensure all names were properly formatted that would send results via Slack or email.

	To do this, I needed to become familiar with version control, for which our team uses Gitea. I practiced forking and cloning repositories, making branches, committing, pushing, and pulling, all via the command line. I was added to the Lodo organization on Gitea and formed a new linting branch in the regex repo. This repo uses R and Python; I worked with R.

	I began by looking at the code already in the repo and trying to familiarize myself with regex. (I would later find a regex cheat sheet that probably would have been very helpful at the beginning. C’est la vie.) I created Perl regexes for each subcategory of the clone names and then wrote some code that identified and changed improperly named clones. Around this point I switched from working with Benchling data to working with AWS S3 file names, as part of the Benchling issue was outsourced. I used my adapted code to write functions to modify or create dataframes with naming issues flagged under a new column and a pipeline demonstrating function usage. This was originally hardcoded with a specific local file. I then learned how to pull files directly from the AWS buckets via the command line and utilized that to standardize my pipeline. zdk helped me formulate my code as a package. I created tests for my package using the testthat package. From here, I wrote an executable script so that running my linter could be automated. I then looked at the Slack API and the Slackr package in order to print the results directly to the #dev channel on Slack.

	My top takeaways from this project: Stack Overflow is a godsend. The command line gets slightly less scary the more you use it. There’s a lot of things I “wouldn’t know” so I should just ask zdk.

Things I Learned:
· Regexes

Here, six regular expressions are assigned to variables. These variables dictate patterns that should be followed for an expression to match. For instance, mol_rx specifies a pattern of 3 capital letters. lib_rx specifies a pattern of a capital ‘L’ followed by 4 digits. file_rx currently allows anything, because there is not yet a set pattern for the file names.

· Slack API: Slackr

	
This code uses the Slackr package in R to print a dataframe directly to the #dev channel using slackr_bot and to add a file to the #dev channel using slackrUpload. slackrSetup() reads from a file specifying api_token, channel: #dev, username: lodo-dev-bot, and incoming_webhook_url.

· AWS S3 buckets

This is a terminal command that reads the data from the AWS S3 bucket specified into a text file called “s3file”. Amazon Web Services offers clients a variety of cloud computing services. S3 provides virtually limitless object storage space on the cloud, and this space is organized into buckets. Lodo stores its clone data in one such bucket.

· Version control via Gitea

This is the typical procedure for adding a new version via the command line. git status shows the current branch and any changes that have been made since the last commit. The changes I wish to track are added with git add and then committed with an explanatory message, in this case “total files outputted” because the change made here was to display the total number of files linted in the Slack output. Finally, the committed changes are pushed to the origin branch on Gitea, where a pull request can be made to integrate my edits.

· R
· Packages

I was working to expand Lodo’s Regex package. Admittedly, I did little of the structural work and concentrated on the package content. I wrote various functions for the package. These were grouped into three categories/file types: the linting methods, the tests for these methods, and an executable script for using these methods. Above are corresponding examples of the first two types.

· Scripts

Here is an R script. The shebang at the top invokes Rscript to make the file executable. Of course, for this to be meaningful, there should be something being executed, hence to call to main() at the bottom. Within the script, commands to the terminal can be executed, as seen above.
image3.emf
Lodos-MacBook-Pro:Lodo. regex aryan$ aws s3 ls s3://lodoclonedata —-
recursive > s3file

Microsoft_Word_Document2.docx
[bookmark: _GoBack]Lodos-MacBook-Pro:Lodo.regex aryan$ aws s3 ls s3://lodoclonedata --recursive > s3file

image4.emf
Lodos-MacBook-Pro:Lodo.regex aryan$ git status

On branch s3_linter

Your branch is up-to-date with 'origin/s3_linter'.
Changes not staged for commit:

(use "git add <file>..." to update what will be
committed)
(use "git checkout —- <file>..." to discard changes in

working directory)

modified: .gitignore

modified: R/R/s3FixNamingErrors.R

modified: R/R/s3NamingErrors.R

modified: R/inst/Rscripts/s3mainPipeline.R
modified: R/tests/testthat/test_s3NamingErrors.R

Untracked files:
(use "git add <file>..." to include in what will be
committed)

R/R/benchlingFixNamingErrors.R
R/R/benchlingNamingErrors.R
R/inst/Rscripts/benchlingMainPipeline.R

no changes added to commit (use "git add" and/or "git

commit -a")

Lodos-MacBook-Pro:Lodo.regex aryan$ git add

R/R/s3NamingErrors.R

Lodos-MacBook-Pro:Lodo.regex aryan$ git add

R/inst/Rscripts/s3mainPipeline.R

Lodos-MacBook-Pro:Lodo.regex aryan$ git commit -m "total

files outputted"

[s3_linter 3ed424e] total files outputted

2 files changed, 59 insertions(+), 119 deletions(-)

Lodos-MacBook-Pro:Lodo.regex aryan$ git push

Counting objects: 8, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (7/7), done.

Writing objects: 100% (8/8), 1.24 KiB | @ bytes/s, done.

Total 8 (delta 5), reused @ (delta 0)

To http://192.168.0.179:3001/aryan/Lodo.regex.git
db6abcdf..3ed424e s3 linter —> s3 linter

Microsoft_Word_Document3.docx
[bookmark: _GoBack]Lodos-MacBook-Pro:Lodo.regex aryan$ git status

On branch s3_linter

Your branch is up-to-date with 'origin/s3_linter'.

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

	modified: .gitignore

	modified: R/R/s3FixNamingErrors.R

	modified: R/R/s3NamingErrors.R

	modified: R/inst/Rscripts/s3mainPipeline.R

	modified: R/tests/testthat/test_s3NamingErrors.R

Untracked files:

 (use "git add <file>..." to include in what will be committed)

	R/R/benchlingFixNamingErrors.R

	R/R/benchlingNamingErrors.R

	R/inst/Rscripts/benchlingMainPipeline.R

no changes added to commit (use "git add" and/or "git commit -a")

Lodos-MacBook-Pro:Lodo.regex aryan$ git add R/R/s3NamingErrors.R

Lodos-MacBook-Pro:Lodo.regex aryan$ git add R/inst/Rscripts/s3mainPipeline.R

Lodos-MacBook-Pro:Lodo.regex aryan$ git commit -m "total files outputted"

[s3_linter 3ed424e] total files outputted

 2 files changed, 59 insertions(+), 119 deletions(-)

Lodos-MacBook-Pro:Lodo.regex aryan$ git push

Counting objects: 8, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (7/7), done.

Writing objects: 100% (8/8), 1.24 KiB | 0 bytes/s, done.

Total 8 (delta 5), reused 0 (delta 0)

To http://192.168.0.179:3001/aryan/Lodo.regex.git

 d6abcdf..3ed424e s3_linter -> s3_linter

image5.emf
R RRRRRRRRRRRRRREERRRERREREERERRERRRRRRRRRRRRRRRRRERRRRRRRRRRRRRRRRRRRRRRRRRRERRRRRRRRRRERRRREEEERREERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRERRRRRERERRRRRRRRRRRERRRRRRRRRRRRRRRERRRRRRRRRERRERRERERRRRRRRRRRRRERRREERRRRRRRRRRERRRRRERERRRRRRRRRRRRRRRRRRRRERERRERRRRRESESEE=——

molError <— function(molname, mol_rx) {
if (!(grepl(mol_rx, molname, perl = TRUE))) {
return("M")

b

return(™")

Microsoft_Word_Document4.docx
takes molecule name and correct format and returns error code

molError <- function(molname, mol_rx) {

 if (!(grepl(mol_rx, molname, perl = TRUE))) {

 return("M")

 }

 return("")

[bookmark: _GoBack]}

image6.emf
R R RRRRRRRRRERERREREERRRRRRERRRRRERRRERERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRREREERERERRRRRRRRRRRERERRRERRRREEEREERRRRRRERERRRRERRERRRRRERERREREEEEEEEEE=—————.

test_that("molError works correctly", {

mol_rx <- "~[A-Z]{3}s"

e <— molError("ARL", mol_rx)
expect_equal(e, "")

e <— molError ("NMN", mol_rx)
expect_equal(e, "")

e <— molError("111", mol_rx)
expect_equal(e, "M")

e <— molError("foo", mol_rx)
expect_equal(e, "M")

e <— molError ("ALEX", mol_rx)
expect_equal(e, "M")

Microsoft_Word_Document5.docx
test_that("molError works correctly", {

 mol_rx <- "^[A-Z]{3}$"

 e <- molError("ARL", mol_rx)

 expect_equal(e, "")

 e <- molError("NMN", mol_rx)

 expect_equal(e, "")

 e <- molError("111", mol_rx)

 expect_equal(e, "M")

 e <- molError("foo", mol_rx)

 expect_equal(e, "M")

 e <- molError("ALEX", mol_rx)

 expect_equal(e, "M")

[bookmark: _GoBack]})

image7.emf
main <— function() {

cmd <— paste("aws s3 1s s3://lodoclonedata —-recursive >", s3file)
system(cmd)

main()

Microsoft_Word_Document6.docx
#!/bin/env Rscript

main <- function() {

 # code

 cmd <- paste("aws s3 ls s3://lodoclonedata --recursive >", s3file)

 system(cmd)

 # more code

[bookmark: _GoBack]}

main()

image1.emf
R EEERERERRRREEREEREEEEERERRERRRRRERRERERRERERREEEEEERRREEERRRRREREEEEEERRRERRERERERRREEEEERRRRRRREREERREEEESRRREERRRRRRERERERRRRERERERREEREERRRRERRRERERESEEEEEEERRREREEERRERRRRERRRREREEEERERREREEEERERREEREREEERRERERERERERRREEEEEEEEEESSEEEEE——————

mol_rx <- "~[A-Z]{3}3"
lib_rx <- "~L[0-9]{4}$"
well _rx <— "~[0-9]{3}s"
bin_rx <- "~[A-Z]1[0-9]+%"
date_rx <- "~[1-2] [0-9]{3}[0-1][0-9][0-3][0-9] $"
file_rx <-
"A[A-Z, a-z, —, 0-9]+$"

Microsoft_Word_Document.docx
 mol_rx <- "^[A-Z]{3}$"

 lib_rx <- "^L[0-9]{4}$"

 well_rx <- "^[0-9]{3}$"

 bin_rx <- "^[A-Z][0-9]+$"

 date_rx <- "^[1-2][0-9]{3}[0-1][0-9][0-3][0-9]$" # yyyymmdd

 file_rx <-

[bookmark: _GoBack] "^[A-Z, a-z, -~, 0-9]+$" # TODO: Fill in with file regex once standardized

image2.emf
R RRRRRRRRRRRERRRRERRRERRRRRRERRRRRRRRERRERRRRRRRRRRRRRRRERRRRRRRRRRERRRRRRRRERERRRRRRRRRRRRRRERRRRERRERRRRRRRRRRRRRERRRRRRRRRRERRRRRRRRRRRERRRRRRRRRRRRRRRERRRRERRERRRRRRERRRRRRRRERRRRRERRRRRRRRRRRRRERRRRRRRRRRRRRRERERRRRRRRRRRRERERRERBRRERERERRREEEEREEEEEEE——————

library(slackr)
slackrSetup ()
slackr_bot(print.data.frame(errorStatsDF, row.names = FALSE))

slackrUpload(recentErrorStats,
initial_comment = "s3 Clone Bucket Naming Error Stats",
channels = "#dev")

Microsoft_Word_Document1.docx
 library(slackr)

 slackrSetup()

 slackr_bot(print.data.frame(errorStatsDF, row.names = FALSE)) # print error stats to dev channel of Slack

 slackrUpload(recentErrorStats,

 initial_comment = "s3 Clone Bucket Naming Error Stats",

[bookmark: _GoBack] channels = "#dev") # upload error stats txt file to Slack dev channel

